

DC/DC Input Bus Conditioner FLHGI-90 Series : 90 W Power

1 - General

Key features

- Ultra wide input range 12-140 Vdc
- Transient 385Vdc (20ms) per RIA12
- Transient 165Vdc (1s)
- Reverse polarity protection
- Hold-up function
- Integrated EMI filter per 50121-3-2

General characteristics

- Nominal power up to : 90 W
- Galvanic isolation input/output : No Isolation
- Protections : Reverse polarity, ASP

- dedicated to EN50155, EN50121, RIA12

The input bus conditioner FLHGI-90 designates a 90 W input bus front end that enables and eases construction of power architectures for railway applications. The FLHGI-90 includes:

• An input EMI filter removing both common and differential input conducted noise to comply EN550155/EN 55022 EMC Standards.

• An input spike & surge limiter to comply EN50155/61000 and RIA12 over-voltages.

- A reverse polarity protection.
- A soft start function.
- An hold-up function.
- A synchronization output function.

• An ASP function that protects application from abnormal surge, bit switching off the down-converter supply.

Leveraging so many functions, the FLGHI-90 advantageously replaces all the input stage components of a power architecture such as filters, voltage limiter, ideal diodes, inrush current limiter and hold up modules. As a single component, the FLHGI-90 allows for a drastic reduction in space, as well as an incredible simplification of the power architecture design.

Industrial Grade

Thanks to its wide input range, the input bus conditioner operates with all standard batteries voltages, according to 3 modes of operation:

- Normal operation: When input bus voltage is within its steady state range, the FLHGI-90 acts like a buffer that transmits the input power to the DC/DC architecture with low losses, and conducted noise filtering.

- Transient operation: The FLHGI-90 clamps input transient, limiting its output voltage to the maximum voltage value acceptable by downstream DC/DC architecture. In addition, if transient operation enters an abnormal condition of voltage value or duration, an Abnormal Surge Protection function (ASP) shuts down FLHGI-90 output voltage to protect the downstream converter architecture.

- Hold-Up operation: The hold-up operation occurs when the input bus drops below a low voltage level determined by a simple external resistor. In this case, the FLHGI-90 connects the down stream converter input bus to the charged hold-up capacitor in order to pursue operation during application input bus drop.

The module is potted with a bi-component thermal conductive compound and packaged in a metallic case to ensure the module's integrity under severe environmental conditions.

1.1 - Product code construction

Single output model : FLHGI - 90 - Input - Output / Options - Suffix

Input voltage

Output voltage range

. R : 12 - 140 Vdc (165 Vdc / 1 s)

. R : 12 - 140 Vdc (Single)

Consult factory for customized specifications

1.2 Product selection

Order code	Input voltage	Output voltage	Output current
FLHGI-90-R-R	12 - 140 Vdc (Max. 165 Vdc / 1 s)	12 - 140 Vdc	
			()

1.3 Block diagram

2 Mode of operation

2.2 Mode of operation

The FLHGI-90 operates according to different modesof operation that are depending on Input voltage values:

Normal operation :When input voltage is above a minimum thresholdvoltage named Vi_{START} (for rising input voltage) or Vi_{STOPS} (for falling input voltage), and below alimitation threshold value named $Vi_{LIM the}$ output pin of LHUGI-90 is connected to its output pin through an unidirectional switch.

Power fail operation : The power fail operation occurs when the input busdrops below a value (Vth) determined by the value of the resistor connected to the pin (PF-set). In this case the switching MOSFET linking Vi toVo become open. An other internal switche connects the Pin Vc to the pin Vo, allowing downstream architecture converter to be supplied by the Hold-Up capacitor

Transient operation : when input voltage bus goes above V_{LIM}, The FLHGI-90 clamps the input transient, and limits the output to V_{LIM}.

On/Off operation : when On/off pin is tied to GO The FLHGI-9 output is disconnected from the input. The on/off operation overrides the normal operation and transient operation.

ASP Protection : when an abnormal transient voltage occurs at the input (transient longer than described in standards) the FLHGI-90 triggers the ASP function that place the module in off mode.

The figure opposite describes these modes of operation: Vi_{START} starting voltage at rising- Vi_{STOPS} stop input voltage at falling, Vi_{LIM} maxinput voltage in normal operation mode, VimaxTR: max allowed surge voltage, VOLIM : max output voltage VOSTOP: min output voltage.

2 Mode of operation

2.3 Application

Pin functions: <u>Power Pins</u>: Vi (input) : Input power pin referenced to Gi. Gi (input) : Power ground pin. GND(Chassis) : terminal connected to internal common mode cap to tie to chassis. Go (output) : Output power ground pin (this pin is internally connected to Gi through common mode inductor). Vo (output) : Output power pin referenced to Go. Vc (output) : Charger output pin to connect to Hold-up capacitor. This pin is referenced to Go

Control & Monitoring Pins :

PF_set (input/output) : a resistor connected between this pin and Go will adjust the power fail voltage level. Syn/SD (output) : this pin is designed to be connected to the on/off pin of donwstream converter trhough a diode in order to control the on/off function

on/off (input): when this pin is tied to Go, the FLHGI90 stops operation and its Syn/SD falls to Go level. Application to MGRI power archtecture :

The FLHGI90 is an input bus conditionner designed to drastically simplify the RailWay compatible power supplies construction. Developped to be used in conjuction with GAIA converter's reinforced isolation dc/dc of the MGRI families, the input bus conditionner requires only few external components to acheive multiple bus compliance. The bus conditioner application example is presented in the diagram below.

Multiple Outputs Power Architecture Multi Standard Compliant

3 Electrical specifications

3.1 Input

Data are valid at +25°C, unless otherwise specified.

Parameter	Condition	Limit or typical	Unit	Values
Input voltage range	Full temperature range	Min Max.	Vdc	12 - 140
Transient input voltage	1 s	Max.	Vdc	165
Voltage drop @ I max	24 Vdc input voltage	Max.	Vdc	1.6
	110 Vdc input voltage	Max.	Vdc	1.2
No load input current	48V input voltage	Max.	mA	2
Start up time on power-up	Full load, Full temperature range	Max.	ms /	2
Input Voltage Surge	RIA12 Waveform A, 0.2 Ohms source impedance	Max.	Vdc/ms	s 385/20
	RIA12 Waveform B, 0.2 Ohms source impedance	Max.	Vdc/s	165/1
	RIA12 Waveform D, 5 Ohms source impedance, with additional TVS	Max.	Vdc/µs	1800V/50
	RIA12 Waveform G, 100 Ohms source impedance, with additional TVS	Max.	Vdc/µs	1800V/50
	EN50155 /61000 Level 3, 2 Ohms source	Max.	Vdc/µs	2000/50
	EN50155 /61000 Level 4, 2 Ohms source impedance, with externel TVS	Max.	Vdc/µs	4000/50
Reverse input voltage	Full load, Full temperature range	Max.	Vdc	385

Ui stands for Input voltage

3.2 Output

Data are valid at +25°C, unless otherwise specified.

Parameter	Condition	Output type	Output	Limit or typical	Unit	Values
Output voltage		S	R		Vdc	12 - 140
Nominal output voltage in normal operation	Full load, Full temperature range	9		Min Max.	Vdc	Ui-drop-out voltage
Output power (1)	Ui min to Ui max			Max.	W	90
Maximum outpul clamping voltage	Full load, Full temperature range	;		Max.	Vdc	152
Absolute Max output current	Full load, Full temperature range	;		Max.	A	4
Output current	24 Vdc input voltage			Max.	А	4
	110 Vdc input voltage			Max.	A	0.9

(1) it is recommended to manage module cooling, with heatsink or cold plate.

3.3 Hold-Up function

Parameter	Condition	Limit or typical	Unit	Values
Maximum hold-up capacitor voltage (Vch)	Full temperature range 17 Vdc < Ui > 160 Vdc	Typical	Vdc	110
Charger power	Full temperature range 17 Vdc < Ui > 160 Vdc	Typical	W	6
Charger switching frequency	Full load, Full temperature range	Typical	KHz	300
Admissible hold-up capacitance	Full load, Full temperature range		μF	20000
Power fail voltage threashold (Vth)	Adjustable with an external resistor		Vdc	18 to 60
Recommended transistion capacitance	Full load, Full temperature range	Typical	μF	47
Power fail hysteresis	Full load, Full temperature range	Max.	Vdc	TBD
				1

3.4 Protection functions

Parameter	Condition	Limit or typical	Unit	Values
ASP : Abnormal Surge	Stops operation after a duration depending on	Typical	S.V	19
Protection	over voltage level			
On/Off module disable	Ui nominal	Max.	μs	100
delay		~	-	
On/Off module enable	Ui nominal	Min Max.	Vdc	2 to 4.5
voltage				
On/Off module disable	Ui nominal	Min Max.	Vdc	0 to 0.5
voltage				
On/Off module enable	Ui nominal	Max.	ms	30
delay				
Over temperature	Turn-off level	Nominal	%	110 ± 5
protection (OTP)				
	Hysteresis	Nominal	°C	10

3.5 Electrical plots

Data are valid at +25°C, unless otherwise specified.

Hatched areas shows transient operation mode.

The no consumption area indicates that below the given voltage input bus will be transmited to input of dc/dc converter, that should not draw current

3.6 Description of protections

Parameter	Condition	Limit or typical	Unit	Values
On/Off module disable delay	Ui min to Ui max	Max.	μs	100
On/Off module disable voltage	Ui min to Ui max	Min Max.	Vdc	0 to 0.5
On/Off module enable delay	Ui min to Ui max	Max.	ms	30
On/Off module enable voltage	Ui min to Ui max	Min Max.	Vdc	2 to 4.5
Over temperature protection (OTP)	Turn-off level	Nominal	%	110 ± 5
	Hysteresis	Nominal	°C	10

3.7 Isolation

Parameter	Condition		Limit or typical	Unit	Values	
Isolation test voltage	Input to output		Typical		No Isolation	
	Input to case		Min.	Vdc/s	500	
	Output to case	$\wedge \wedge \wedge \wedge \wedge \wedge \wedge$	Min.	Vdc/s	1 500 / 60	

3.8 Reliability Data

3.8 Reliability Da	ata			
Parameter	Condition	Limit or typical	Unit	Values
MTBF IEC62380-TR Reliability	Ambient temperature +55°C, Civilian avionics, calculators		Hrs	TBD
MTBF MIL-HDBK217 Reliability	Case at 40°C, Ground fixed (Gf)		Hrs	TBD
	Case at 85°C, Ground fixed (Gf)		Hrs	TBD
	Airborne, inhabited, cargo (AIC), Case at 40°C		Hrs	TBD
	Airborne, inhabited, cargo (AIC), Case at 85°C		Hrs	TBD

4 Electromagnetic interferences specifications

4.1 Compliance requirements

Electromagnetic Interference requirements according to EN55022 standards can be easily achieved as indicated in the following section

EN 50022 conduced EMI plot @ 48V in 80W out (MRGDI80RE, C2 = 47 μ F C1 = 330 μ F)

Parameter	Standard	Level	Compliance			
Railway application	EN 50121-3-2		Compliant module stand-alone			
Electromagnetic compatibility						
Auxiliary DC power port	EN 5016-2-1		Compliant module stand-alone			
Emission- Battery power supply	EN 5016-2-1		Compliant module stand-alone			
conducted disturbance at	EN 50022		Compliant module stand-alone			
main port			·			

5 Thermal specifications

5.1 General

The following discussion will help designer to determine the thermal characteristics and the operating temperature.

Heat can be removed from the baseplate via three basic mechanisms :

• Radiation transfert : radiation is counting for less than 5% of total heat transfert in majority of case, for this reason the presence of radient cooling is used as a safety margin and is not considered.

• Conduction transfert : in most of the applications, heat will be conducted from the baseplate into an attached heatsink or heat conducting member; heat is conducted thru the interface.

• Convection transfert: convecting heat transfer into air refers to still air or forced air cooling.

In majority of the applications, heat will be removed from the baseplate either with :

- · heatsink,
- · forced air cooling,
- both heatsink and forced air cooling.

To calculate a maximum admissible ambient temperature the following method can be used. Knowing the maximum baseplate temperature **Tcasemax** of the module, the power used **Pout** and the efficiency :

 determine the power dissipated by the module Pdiss that should be evacuated: Pdiss = lin x(Vin-Vout) (A) where In is the input current and Vin =Vi pin voltage and Vout=Vo pin voltage.
 determine the maximum ambient temperature :

• Ta = Tcasemax °C - Rth(b-a) x Pdiss (B) where Rth(b-a) is the thermal resistance from the baseplate to ambient.

This thermal Rth(b-a) resistance is the sum of :

• the thermal resistance of baseplate to heatsink (Rth(b-h)). The interface between baseplate and heatsink can be nothing or a conducting member, a thermal compound, a thermal pad.... The value of Rth(b-h) can range from 0.4 °C/W down to 0.1 °C/W for a thermal conductive member interface.

• the thermal resistance of heatsink to ambient air (Rth(h-a)), which is depending of air flow and given by heatsink supplier.

				4		
Parameter	Condition		Limit or typical	Unit	Values	
Operating case temperature range	With cooling device		Min Max.	°C	-40 to 105	
Storage temperature	Not operating	\sim	Min Max.	°C	-55 to 125	
Thermal resistance			Typical	°C/W	11	

6 Description of functions

6.1 Hold-Up function

The Hold-up section of the LFLHGI90 features a constant power charger that allows to charge a Hol-up capacitor with a total control of inrush current. The hold-up function process follows the given sequence :

1) during normal operation, the internal charger maintains voltage accros hold-up capacitor to the specified value (see chapter 3.3). during this phase the capacitor is not connected to the output pin of FLHGI90.

2)During input bus interruption, when the input bus reaches the powerfail voltage (PF) set by Rth resistor, FLHGI90 connects Hold-up capacitor to the Vo pin, and disconnect the Vo pin from the Vin pin.

3) When input bus recovers power fail voltage + hysteresis value, the Vo pin is reconnected to Vin and Hold-up capacitor reconnected to the charger.

6.2 Power fail voltage threshold : Vth

The power fail voltage threshold of FLHGI90 can be adjusted with a simple low power resistor connected between PF_SET pin and GO. When input bus voltage is above the PF(power fail) voltage threshold, the input bus conditioner operates in normal mode. When voltage of input bus is below the PF voltage threshold, the input bus conditioner operates in hold-up mode mode, disconnecting input from output and connecting hold-up capacitor (Vc pin)to the Vo output pin.

The Rth value in KOhms can be calculated using the following formula where Vth is the power fail voltage threshold : Rth = (770.4-12.4xVth) / (6.2xVth -75.2)

6.3 Hold-up capacitor selection

The hold-up capacitor final charged voltage is not trimmable and fixed to Vch (see section 3.2). To calculate the capacitor value for a given output power and a required hold-up time, the following formula (oposite) need to be applied.

* final hold-up capacitor voltage given section 3.3.

** trimmable power fail voltage threshold given section 3.3, see section 7.2

*** Downstream converters output power.

$$C = \frac{2 * P * T}{eff * (Vch^2 - Vth^2)}$$

C = Hold-up capacitor Value P = converter output power T = expected hold-up time Vch = Capacitor final voltage * Vth = Power fail voltage** eff = Converter efficiency

Hold-Up Capacitor value selection						
Vth (Vdc)	20	20	36	36		
Output Power***	20	80	20	80		
hold up capacitor value C (µF)	220	820	220	900		
hold-up time :T (ms)	50	50	50	50		

6.4 On/Off function

The control pin (On/Off) can be used in applications requiring On/Off operation. This may be done with an open collector transistor, a switch, a relay or an optocoupler. Several input bus conditioners may be disabled with a single switch by connecting all On/Off pins together.

The input bus conditioners is disabled by pulling On/Off pin low, and output sync/SD pin will be also tied to Go, in order to desable downstrem converters. When input bus conditioners is in off mode, its output is disconnected from its input

No connection or high impedance on On/Off pin enables the input bus conditioners

6.5 Reverse polarity protection

The FLHGI90 incorporates reverse polarity protection that protects the downstream DC/DC architecture from damage.The maximum acceptable Vo- Vin level is given in section 3.1.

When an reverse voltage is applied to the input the FLHGI90 output is no longuer delivering power.

6.6 ASP Function

The FLHGI90 embeds an Abnormal Surge Protection (ASP) function that drops output voltage Sync-SD pin level to 0V when input voltage remains in transient range for too long. The ASP function is caracterized with the product of input voltage by duration (see section 3.4)

7 Application notes

7.1 Typical architecture

As shown in the diagram opposite, the FLHGI90's high level of frontend integration makes it possible to build a complete power supply architecture, from the input connector to the output load. The FLHGI90 provides power supply reliability, standard compliance, and protection level in the simplest way possible.

Vin 🕇 🕱

FLHGI90

C1 is the hold-up capacitor, C2 is the trnasition capacitor TVS value depends on input bus voltage.

Architecture drawing is a simplified diagram with only main components shown

8 Mechanical specifications

8.1 Dimensions

Dimensions are given in mm (inches). Tolerance : +/- 0,2 mm (+/- 0.01 ") unless otherwise indicated.

Dimensions are given in mm [inch].

General tolerance is +/-0.2mm [+/-0.008"] unless otherwise indicated.

All dimensions specified "min" or "max" are not subjected to the general tolerance.

8.2 Materials

Case material Metallic black anoc	lized coating
Pins Gold flash over nic	kel 🔨
 8.3 Product marking Side : Company logo. Module reference Date code : year and week of manufacturing, suffix, /option. 8.4 Connections 	S
Pin Fund	ion
1 G	
2 G/	
43 21 4 VI	
5 SYNC	OUT
6 PFS	ET
7 ON/C)FF
8 GC)
9 GC)
13 12 11 10 98 7 6 5 10 VC	;
[•••••] 11 VC)
12 VC)
Bottom view 13 GN	D

For more detailed specifications and applications information, contact :

International Headquarters

18 Rue Caroline Aigle 33185 LE HAILLAN FRANCE Tel. : + 33 5 57 92 12 80

North American Headquarters

1405 Trans-canada Hwy, Suite 520 DORVAL, QC H9P 2V9 CANADA Tel. : +1 514 333 3169

Asia / Pacific Headquarters

26F Morrison Plaza 5-9 Morrison Hill Road, FlatE WANCHAI HONG KONG Tel. : +852 2339 0717

Information given in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. These products are sold only according to GAIA Converter general conditions of sale, unless otherwise confirmed by writing. Specifications subject to change without notice.